You can list your R DataFrame column names by using the following methods:
R base:
column_names <- names(interviews)
Using dplyr:
library (dplyr)
column_names <- interviews %>%
names()
Using tidyverse:
library(tidyverse)
column_names <- names(select(interviews, everything()))
Using janitor:
library(janitor)
column_names <- get_column_names(interviews)
Get R column names – Practical Example
Define sample DataFrame
Run the following snippet in your R studio environment to create a DataFrame that we’ll use for this tutorial:
month <- c ('December', 'October', 'November', 'July', 'June', 'July')
office <- c ('Osaka', 'Toronto', 'New York', 'Los Angeles', 'Rio de Janeiro', 'Bangalore')
language <- c ('Python', 'Javascript', 'Java', 'R', 'Java', 'Javascript')
salary <- c (149, 156, 138, 213, 105, 176)
interviews <- data.frame (month = month, office = office, language = language, salary = salary)
List column names with R Base
We can use the following R studio to get the column names and convert to a list:
column_names <- as.list(names(interviews))
We can easily browse the list of column values in the RStudio environment tab
Write list of DataFrame columns with dplyr
You can use Dplyr to fetch the column names using the following snippet:
library (dplyr)
column_names <- interviews %>%
names()
print(column_names)
We’ll get the following character string:
[1] "month" "office" "language" "salary"
Fetch list of columns with tidyverse
To extract the column names, we can also use the tidyverse select function as shown below:
library(tidyverse)
column_names <- names(select(interviews, everything()))
print (column_names)
We will get a similar result as shown above.
Remember: Make sure to install the tidyverse library (or any other 3rd party package) before invoking it in your R script.